7 resultados para Nucleic Acid Hybridization

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibodies to specific nucleic acid conformations are amongst the methods that have allowed the study of non-canonical (Watson-Crick) DNA structures in higher organisms. In this work, the structural limitations for the immunological detection of DNA.RNA hybrid duplexes were examined using specific RNA homopolymers as probes for homopolymer polydeoxyadenylic acid (poly(dA)).polydeoxythymidylic acid (poly(dT))-rich regions of Rhynchosciara americana (Diptera: Sciaridae) chromosomes. Anti-DNA.RNA duplexes did not react with the complex formed between chromosomal poly(dA) and exogenous polyuridylic acid (poly(rU)). Additionally, poly(rU) prevented the detection of polyadenylic acid.poly(dT) hybrid duplexes preformed in situ. These results raised the possibility that three-stranded structures rather than duplexes were formed in chromosomal sites. To test this hypothesis, the specificity of antibodies to triple-helical nucleic acids was reassessed employing distinct nucleic acid configurations. These antibodies were raised to the poly(dA).poly(rU).poly(rU) complex and have been used here for the first time in immunocytochemistry. Anti-triplex antibodies recognised the complex poly(dA).poly(rU).poly(rU) assembled with poly(rU) in poly(dA).poly(dT)-rich homopolymer regions of R. americana chromosomes. The antibodies could not detect short triplex stretches, suggesting the existence of constraints for triple-helix detection, probably related to triplex tract length. In addition, anti-poly(dA).poly(rU).poly(rU) antibodies reacted with the pericentric heterochromatin of RNase-treated polytene chromosomes of R. americana and Drosophila melanogaster. In apparent agreement with data obtained in cell types from other organisms, the results of this work suggest that significant triple-helix DNA extensions can be formed in pericentric regions of these species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A DNA-like duplex of nucleosides is probable to exist even without the 5`-phosphate groups needed to assemble the chain backbone. However, double-stranded helical structures of nucleosides are unknown. Here, we report a duplex of nucleoside analogs that is spontaneously assembled due to stacking of the neutral and protonated molecules of lamivudine, a nucleoside reverse transcriptase inhibitor (NTRI) widely used in anti-HIV drug combinatory medication. The left-handed lamivudine duplex has features similar to those of i-motif DNA, as the face-to-face base stacking and the helix rise per base pair. Furthermore, the protonation pattern on alternate bases expected for it DNA-like duplex stabilized by pairing of neutral and protonated cytosine fragments was observed for the first time in the lamivudine double-stranded helix. This structure demonstrates that hydrogen bonds can substitute for covalent phosphodiester linkage in the stabilization of the duplex backbone. This interesting example of spontaneous molecular self-organization indicates that the 5`-phosphate group could not be a requirement for duplex assembly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cold shock response in bacteria involves the expression of low-molecular weight cold shock proteins (CSPs) containing a nucleic acid-binding cold shock domain (CSD), which are known to destabilize secondary structures on mRNAs, facilitating translation at low temperatures. Caulobacter crescentus cspA and cspB are induced upon cold shock, while cspC and cspD are induced during stationary phase. In this work, we determined a new coding sequence for the cspC gene, revealing that it encodes a protein containing two CSDs. The phenotypes of C. crescentus csp mutants were analyzed, and we found that cspC is important for cells to maintain viability during extended periods in stationary phase. Also, cspC and cspCD strains presented altered morphology, with frequent non-viable filamentous cells, and cspCD also showed a pronounced cell death at late stationary phase. In contrast, the cspAB mutant presented increased viability in this phase, which is accompanied by an altered expression of both cspC and cspD, but the triple cspABD mutant loses this characteristic. Taken together, our results suggest that there is a hierarchy of importance among the csp genes regarding stationary phase viability, which is probably achieved by a fine tune balance of the levels of these proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dehydroepiandrosterone ( DHEA) is known as an intermediate in the synthesis of mammalian steroids and a potent uncompetitive inhibitor of mammalian glucose-6-phosphate dehydrogenase (G6PDH), but not the enzyme from plants and lower eukaryotes. G6PDH catalyzes the first step of the pentose-phosphate pathway supplying cells with ribose 5-phosphate, a precursor of nucleic acid synthesis, and NADPH for biosynthetic processes and protection against oxidative stress. In this paper we demonstrate that also G6PDH of the protozoan parasite Trypanosoma brucei is uncompetitively inhibited by DHEA and epiandrosterone (EA), with K(i) values in the lower micromolar range. A viability assay confirmed the toxic effect of both steroids on cultured T. brucei bloodstream form cells. Additionally, RNAi mediated reduction of the G6PDH level in T. brucei bloodstream forms validated this enzyme as a drug target against Human African Trypanosomiasis. Together these findings show that inhibition of G6PDH by DHEA derivatives may lead to the development of a new class of anti-trypanosomatid compounds. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liponucleosides may assist the anchoring of nucleic acid nitrogen bases into biological membranes for tailored nanobiotechnological applications. To this end precise knowledge about the biophysical and chemical details at the membrane surface is required. In this paper, we used Langmuir monolayers as simplified cell membrane models and studied the insertion of five lipidated nucleosides. These molecules varied in the type of the covalently attached lipid group, the nucleobase, and the number of hydrophobic moieties attached to the nucleoside. All five lipidated nucleosides were found to be surface-active and capable of forming stable monolayers. They could also be incorporated into dipalmitoylphosphatidylcholine (DPPC) monolayers, four of which induced expansion in the surface pressure isotherm and a decrease in the surface compression modulus of DPPC. In contrast, one nucleoside possessing three alkyl chain modifications formed very condensed monolayers and induced film condensation and an increase in the compression modulus for the DPPC monolayer, thus reflecting the importance of the ability of the nucleoside molecules to be arranged in a closely packed manner. The implications of these results lie on the possibility of tuning nucleic acid pairing by modifying structural characteristics of the liponucleosides. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonadiabatic photochemistry of 6-azauracil has been studied by means of the CASPT2//CASSCF protocol and double-zeta plus polarization ANO basis sets. Minimum energy states, transition states, minimum energy paths, and surface intersections have been computed in order to obtain an accurate description of several potential energy hypersurfaces. It is concluded that, after absorption of ultraviolet radiation (248 nm), two main relaxation mechanisms may occur, via which the lowest (3)(pi pi*) state can be populated. The first one takes place via a conical intersection involving the bright (1)(pi pi*) and the lowest (1)(n pi*) states, ((1)pi pi*/(1)n pi*)(CI), from which a low energy singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), connecting the (1)(n pi*) state to the lowest (3)(pi pi*) triplet state is accessible. The second mechanism arises via a singlet-triplet crossing, ((1)pi pi*/(3)n pi*)(STC), leading to a conical intersection in the triplet manifold, ((3)n pi*/(3)pi pi*)(CI), evolving to the lowest (3)(pi pi*) state. Further radiationless decay to the ground state is possible through a (gs/(3)pi pi*)(STC).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prefrontal cortex executes important functions such as differentiation of conflicting thoughts, correct social behavior and personality expression, and is directly implicated in different neurodegenerative diseases. We performed a shotgun proteome analysis that included IEF fractionation, RP-LC, and MALDI-TOF/TOF mass spectrometric analysis of tryptic digests from a pool of seven human dorsolateral prefrontal cortex protein extracts. In this report, we present a catalog of 387 proteins expressed in these samples, identified by two or more peptides and high confidence search scores. These proteins are involved in different biological processes such as cell growth and/or maintenance, metabolism/energy pathways, cell communication/signal trarisduction, protein metabolism, transport, regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism, and immune response. This analysis contributes to the knowledge of the human brain proteome by adding sample diversity and protein expression data from an alternative technical approach. It will also aid comparative studies of different brain areas and medical conditions, with future applications in basic and clinical research.